Drip water electrical conductivity as an indicator of cave ventilation at the event scale.
نویسندگان
چکیده
The use of speleothems to reconstruct past climatic and environmental change through chemical proxies is becoming increasingly common. Speleothem chemistry is controlled by hydrological and atmospheric processes which vary over seasonal time scales. However, as many reconstructions using speleothem carbonate are now endeavouring to acquire information about precipitation and temperature dynamics at a scale that can capture short term hydrological events, our understanding of within cave processes must match this resolution. Monitoring within Cueva de Asiul (N. Spain) has identified rapid (hourly resolution) changes in drip water electrical conductivity (EC), which is regulated by the pCO2 in the cave air. Drip water EC is therefore controlled by different modes of cave ventilation. In Cueva de Asiul a combination of density differences, and external pressure changes control ventilation patterns. Density driven changes in cave ventilation occur on a diurnal scale at this site irrespective of season, driven by fluctuations in external temperature across the cave internal temperature threshold. As external temperatures drop below those within the cave low pCO2 external air enters the void, facilitating the deposition of speleothem carbonate and causing a reduction in measured drip water EC. Additionally, decreases in external pressure related to storm activity act as a secondary ventilation mechanism. Reductions in external air pressure cause a drop in cave air pressure, enhancing karst air draw down, increasing the pCO2 of the cave and therefore the EC measured within drip waters. EC thereby serves as a first order indicator of cave ventilation, regardless of changes in speleothem drip rates and karst hydrological conditions. High resolution monitoring of cave drip water electrical conductivity reveals the highly sensitive nature of ventilation dynamics within cave environments, and highlights the importance of this for understanding trace element incorporation into speleothem carbonate at the event scale.
منابع مشابه
Petrology and geochemistry of annually laminated stalagmites from an Alpine cave (Obir, Austria): seasonal cave physiology
Calcite stalagmites from Obir, an Alpine (1100 m altitude), perennially wet cave, were studied using optical and electron backscatter diffraction petrology, bulk ICP-MS analysis, and microanalysis by ion microprobe and micro-X-ray fluorescence using synchrotron radiation. Drip water penetrates 70 m through Triassic limestones (with some Pb-Zn mineralization) to the chamber Säulenhalle where the...
متن کاملResponse of cave air CO2 and drip water to brush clearing in central Texas: Implications for recharge and soil CO2 dynamics
[1] Brush removal is commonly conducted to increase water availability in arid areas, such as central Texas, where water resources are stressed. The effectiveness of brush clearing to enhance recharge, however, remains uncertain as numerous studies have yielded contradictory results. This study assesses the effects of brush clearing on recharge to a cave at Natural Bridge Caverns, central Texas...
متن کاملEvaporative cooling of speleothem drip water
This study describes the first use of concurrent high-precision temperature and drip rate monitoring to explore what controls the temperature of speleothem forming drip water. Two contrasting sites, one with fast transient and one with slow constant dripping, in a temperate semi-arid location (Wellington, NSW, Australia), exhibit drip water temperatures which deviate significantly from the cave...
متن کاملSeasonal dripwater Mg/Ca and Sr/Ca variations driven by cave ventilation: Implications for and modeling of speleothem paleoclimate records
A 4-year study in a central Texas cave quantifies multiple mechanisms that control dripwater composition and how these mechanisms vary at different drip sites. We monitored cave-air compositions, in situ calcite growth, dripwater composition and drip rate every 4–6 weeks. Three groups of drip sites are delineated (Groups 1–3) based on geochemical variations in dripwater composition. Quantitativ...
متن کاملInterpretation of speleothem calcite dC variations: Evidence from monitoring soil CO2, drip water, and modern speleothem calcite in central Texas
We studied the sources and transport of carbon in two active karst systems in central Texas, Inner Space Cavern (IS) and Natural Bridge North and South Caverns (NB), to provide new insights into the interpretation of speleothem (cave calcite deposit) carbon isotope compositions. We have determined the dC values of soil CO2 (d Cs) in grassland and savanna above these caves with dC values of cave...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Science of the total environment
دوره 532 شماره
صفحات -
تاریخ انتشار 2015